汽液两相二维压力波传播程序开发及验证

龚政宇¹ 辜峙钘^{1,2} 潘麒文¹ 张牧昊¹ 戴嘉宁¹
 1(成都理工大学核技术与自动化工程学院 成都 610059)
 2(中国核动力研究设计院核反应堆系统设计技术重点实验室 成都 610213)

摘要反应堆系统内压力波传播将造成水力学载荷问题,压力波传播的精确模拟对结构载荷分析而言尤为重要。系统分析程序(RELAP5、TRACE等)被广泛应用于反应堆压力波传播模拟,但系统分析程序通常只能处理压力波单向一维传播行为,为应对压力波多向多维传播问题,本文就汽水两相流中存在的压力波二维传播行为,开展了相关模型与算法研究。具体采用了二维轴对称圆柱坐标系,考虑了汽水两相非平衡态相变传热、传质行为,偏微分方程求解使用了时间步分割四步算法,开发了程序代码TPFPWPC-2D。采用典型汽、水两相激波管基准例题开展了程序验证,结果符合较好。为考查程序处理压力波二维传播的能力,对圆柱体空间区域内的压力波传播行为进行了数值模拟,结果显示该程序捕捉到了压力波的二维传播特性,尤其是压力波的反射与叠加特性。

关键词 两相流,压力波传播,两相激波管,二维传播特性,程序开发 中图分类号 TL334 DOI: 10.11889/j.0253-3219.2023.hjs.46.060605

Development and verification of code for simulation of vapor-liquid two phase 2D pressure wave propagation

GONG Zhengyu¹ GU Zhixing^{1,2} PAN Qiwen¹ ZHANG Muhao¹ DAI Jianing¹

1(College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China) 2(Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China)

Abstract [Background] The propagation of pressure waves in nuclear energy systems will cause hydraulic load effects, and it is particularly important for the analysis of structural loads to accurately simulate the propagation process of pressure waves. System analysis codes such as RELAP5, TRACE, *etc.* are widely used in the simulation and analysis of reactor pressure wave propagation. But system analysis codes can only simulate one-dimensional pressure wave propagation behavior. [Purpose] To cope with the multi-directional and multi-dimensional pressure wave propagation issue, corresponding model and algorithm study is carried out in this paper to investigate the two-dimensional pressure wave propagation behavior in two-phase steam-water flow condition. [Methods] By employing a four-step algorithm of time-step separation, and a non-equilibrium phase transition heat transfer model, a two-dimensional two-phase flow pressure wave propagation code (TPFPWPC-2D) is developed based on 2D axisymmetric cylindrical coordinate system. The code verification is carried out by using a typical benchmark of steam-water two-phase shock tube. Finally, in order to verify the ability of TPFPWPC-2D code to simulate the two-

国家自然科学基金(No.12005025)、四川省自然科学基金(No.2022NSFSC0253)资助

第一作者: 龚政宇, 男, 1999年出生, 2020年毕业于华北水利水电大学, 现为硕士研究生, 研究领域为反应堆热工水力与安全分析

通信作者: 辜峙钘, E-mail: guzhixing17@163.com

收稿日期: 2022-11-06, 修回日期: 2022-12-19

Supported by National Natural Science Foundation of China (No.12005025), Natural Science Foundation of Sichuan Province (No.2022NSFSC0253) First author: GONG Zhengyu, male, born in 1999, graduated from North China University of Water Resources and Electric Power in 2020, master student, focusing on thermal- hydraulic design and safety analysis of reactors

Corresponding author: GU Zhixing, E-mail: guzhixing17@163.com

Received date: 2022-11-06, revised date: 2022-12-19

dimensional propagation of pressure waves, numerical simulations of the pressure wave propagation behavior in a cylindrical space region were conducted. **[Results]** The results of code verification show that the new code proposed here agrees well with the two system analysis codes RELAP5 and WAHA. The 2D simulation application shows that the new code can capture the 2D propagation processes of pressure wave reasonably, especially the reflection and superposition characteristics. **[Conclusions]** From the results mentioned above, conclusions can be drawn that the new code developed in this paper can simulate the two-dimensional axisymmetric propagation characteristics reasonably in both quantitative and qualitative levels.

Key words Two-phase flow, Pressure wave propagation, Two phase shock wave tube, 2D propagation characteristics, Code development

压力波传播特性是反应堆事故安全分析的关注 点之一,反应堆系统内压力波传播将引发水力学载 荷问题,获得压力波的传播数据是开展结构载荷分 析、评价的必要条件^[1]。核能系统反应堆内的压力 波传播现象一般由瞬态事故引发,例如,蒸汽轮机/ 主蒸汽管阀突开、突闭,或诸如冷却剂丧失(Loss Of Coolant Accident, LOCA), 蒸汽发生器传热管破裂 (Steam Generator Tube Rupture accident, SGTR)^[2]等 事故。大部分压力波传播数值模拟采用可压缩欧拉 流体动力学模型[3]。而对于两相流动、传热、传质条 件下的压力波传播问题,通常选用两流体六方程模 型,被系统分析程序广泛使用,如RELAP5,TRACE, WAHA^[4-5]。Sokolowski 等^[6]针对典型系统分析程序 RELAP5 模拟压力波传播的能力开展了分析与评 价,包括单相气体介质、单相蒸汽介质及汽水两相介 质条件下压力波传播问题。Barna 和 Serre 使用蒸汽 冷凝引发的水锤效应及压力波传播案例,对 WAHA3和 CATHARE 程序也进行了分析与评 价[7-8]。另外,两流体六方程模型一致采用平衡态压 力模型,即气液两相的动量守恒方程共用同一压力, 针对该问题,相关研究机构已开始研发新一代反应 堆系统分析程序,如RELAP7,其核心便是双压力七 方程模型。Delchini等^[9]基于单相、两相激波管基准 例题,分析、评价了RELAP7程序捕捉压力波传播行 为的能力,结果表明:在压力波传播模拟方面,该程 序的确优于RELAP5程序。

压力波传播行为通常存在多维特性,几何结构 越复杂,该特征越显著,例如SGTR事故下压力波在 传热管束范围内的复杂传播、反射及叠加行为,而前 述系统分析程序通常属于一维程序,无法处理压力 波的多维传播问题,因此开展压力波多维传播模拟 技术、方法研究具有重要意义。针对该问题,本文就 汽、水两相流中存在的压力波二维轴对称传播行为, 开展了数值模型与算法研究,控制方程采用二维轴 对称圆柱坐标系,考虑了汽、水两相非平衡态相变传 热、传质行为,控制方程求解使用了时间步分离四步 算法,开发了程序代码TPFPWPC-2D(Two Dimensional Two Phase Flow Pressure Wave Propagation Code)。采用典型汽、水两相激波管基 准例题开展了程序验证,同时为考查该程序模拟压 力波二维传播特性的能力,对圆柱体空间内压力波 的轴对称二维传播特性进行了数值模拟与分析 研究。

1 模型和算法

1.1 控制方程

本文涉及的控制方程主要包括质量守恒方程、 动量守恒方程、能量守恒方程,且全部控制方程均基 于二维轴对称圆柱体坐标系导出。

1)质量守恒方程

就质量组分而言,考虑三种不同质量组分,即液态水、水蒸气、不可凝气体,其质量守恒方程如式(1)~(3)所示。其中: Γ_c 、 Γ_v 为相变质量源项; a_L 为液态水体积份额; a_G 为蒸汽混合物(水蒸气和不可凝气体)体积份额; $\bar{\rho}_L$ 、 $\bar{\rho}_{Ggas}$ 分别是液态水、水蒸气、不可凝气体宏观密度; ρ_L 、 ρ_{Ggas} 分别是液态水、水蒸气、不可凝气体宏观密度; ρ_L 、 ρ_{Ggas} 为相应理论密度; u_L 、 u_G 分别是液态水、蒸汽混合物径向速度; v_L 、 v_G 为相应轴向速度。可以看出水蒸气和不可凝结性气体共享同一速度场。

$$\frac{\partial \bar{\rho}_{\rm L}}{\partial t} + \frac{1}{r} \frac{\partial \bar{\rho}_{\rm L} u_{\rm L} r}{\partial r} + \frac{\partial \bar{\rho}_{\rm L} v_{\rm L}}{\partial z} = \Gamma_{\rm C} - \Gamma_{\rm V}, \bar{\rho}_{\rm L} = \alpha_{\rm L} \rho_{\rm L} (1)$$

$$\frac{\partial \rho_{\text{Gh2o}}}{\partial t} + \frac{1}{r} \frac{\partial \rho_{\text{Gh2o}} u_{\text{G}} r}{\partial r} + \frac{\partial \rho_{\text{Gh2o}} v_{\text{G}}}{\partial z} = \Gamma_{\text{V}} - \Gamma_{\text{C}}, \qquad (2)$$
$$\bar{\rho}_{\text{Gh2o}} = \alpha_{\text{G}} \rho_{\text{Gh2o}}$$

$$\frac{\partial \bar{\rho}_{\text{Ggas}}}{\partial t} + \frac{1}{r} \frac{\partial \bar{\rho}_{\text{Ggas}} u_{\text{G}} r}{\partial r} + \frac{\partial \bar{\rho}_{\text{Ggas}} v_{\text{G}}}{\partial z} = 0, \qquad (3)$$
$$\bar{\rho}_{\text{Ggas}} = \alpha_{\text{G}} \rho_{\text{Ggas}}$$

2) 动量守恒方程

本文考虑了两类速度场组分,即液态水速度场和蒸汽混合物速度场,其径向动量守恒方程由式 (4)、(5)描述,轴向动量守恒方程如式(6)、(7)所示。 其中:p为网格压强;F_{DR,G,R}、F_{DR,L,R}表示气、液两相径 向曳力; $F_{\text{DR,G,Z}}$ 、 $F_{\text{DR,L,Z}}$ 表示气、液两相轴向拽曳力; $F_{\text{VM,G,R}}$ 、 $F_{\text{VM,L,R}}$ 为气、液两相径向虚拟质量力; $F_{\text{VM,G,Z}}$ 、 $F_{\text{VM,L,Z}}$ 表示气、液两相轴向虚拟质量力; $\bar{\rho}_{\text{G}}$ 为 蒸汽混合物宏观密度,表示为 $\bar{\rho}_{\text{G}} = \bar{\rho}_{\text{Gh2o}} + \bar{\rho}_{\text{Ggas}}$ 。

$$\frac{\partial \bar{\rho}_{\rm L} u_{\rm L}}{\partial t} + \frac{1}{r} \frac{\partial \bar{\rho}_{\rm L} u_{\rm L} u_{\rm L} r}{\partial r} + \frac{\partial \bar{\rho}_{\rm L} u_{\rm L} v_{\rm L}}{\partial z} = -\alpha_{\rm L} \frac{\partial p}{\partial r} + F_{\rm DR,L,R} +$$

$$F_{\rm VM,L,R} + \Gamma_{\rm C} u_{\rm G} - \Gamma_{\rm V} u_{\rm L} \tag{4}$$

$$\frac{\partial \rho_{\rm G} u_{\rm G}}{\partial t} + \frac{1}{r} \frac{\partial \rho_{\rm G} u_{\rm G} u_{\rm G} r}{\partial r} + \frac{\partial \rho_{\rm G} u_{\rm G} v_{\rm G}}{\partial z} = -\alpha_{\rm G} \frac{\partial p}{\partial r} +$$

$$F_{\text{DR,G,R}} + F_{\text{VM,G,R}} + \Gamma_{\text{V}}u_{\text{L}} - \Gamma_{\text{C}}u_{\text{G}}$$

$$\partial \bar{\rho}_{\text{I}} v_{\text{I}} = 1 \quad \partial \bar{\rho}_{\text{I}} v_{\text{I}} u_{\text{I}} r = \partial \bar{\rho}_{\text{I}} v_{\text{I}} v_{\text{I}} \qquad \partial p = 0$$
(5)

$$\frac{\partial t}{\partial t} + \frac{1}{r} \frac{\partial r}{\partial r} + \frac{1}{r} \frac{\partial z}{\partial z} - -\alpha_{\rm L} \frac{\partial z}{\partial z} + r_{\rm DR,LZ} + F_{\rm VM,LZ} + \Gamma_{\rm C} v_{\rm G} - \Gamma_{\rm V} v_{\rm L}$$
(6)

$$\frac{\partial \bar{\rho}_{\rm G} v_{\rm G}}{\partial t} + \frac{1}{r} \frac{\partial \bar{\rho}_{\rm G} v_{\rm G} u_{\rm G} r}{\partial r} + \frac{\partial \bar{\rho}_{\rm G} v_{\rm G} v_{\rm G}}{\partial z} = -\alpha_{\rm G} \frac{\partial p}{\partial z} + F_{\rm DR,G,Z} + F_{\rm VM,G,Z} + F_{\rm VV,L} - \Gamma_{\rm C} v_{\rm G}$$

$$(7)$$

考虑两种能量组分,即液态水、蒸汽混合物,其 能量守恒方程如式(8)、(9)所示。其中:Q_{Γ,G}、Q_{Γ,L}为 非平衡态相变传热;Q_G、Q_L为平衡态温差传热;a为 接触面积;h为换热系数;ΔT为温差。由于本文模拟 对象涉及强传热、传质,而且对流效应也非常显著, 因此忽略了网格间热传导的贡献,也忽略了相间相 互作用力做功的贡献。

$$\frac{\partial\bar{\rho}_{\rm L}e_{\rm L}}{\partial t} + \frac{1}{r}\frac{\partial\bar{\rho}_{\rm L}e_{\rm L}u_{\rm L}r}{\partial r} + \frac{\partial\bar{\rho}_{\rm L}e_{\rm L}v_{\rm L}}{\partial z} = -p\left(\frac{\partial\alpha_{\rm L}}{\partial t} + \frac{1}{r}\frac{\partial\alpha_{\rm L}u_{\rm L}r}{\partial r} + \frac{\partial\alpha_{\rm L}v_{\rm L}}{\partial z}\right) + Q_{\Gamma,\rm L} + Q_{\rm L}(a,h,\Delta T) \qquad (8)$$
$$\frac{\partial\bar{\rho}_{\rm G}}{\partial t} + \frac{1}{r}\frac{\partial\bar{\rho}_{\rm G}}{\partial r}e_{\rm G}u_{\rm G}r}{\partial r} + \frac{\partial\bar{\rho}_{\rm G}}{\partial z}e_{\rm G}v_{\rm G}}{\partial z} = -p\left(\frac{\partial\alpha_{\rm G}}{\partial t} + \frac{\partial\bar{\rho}_{\rm G}}{\partial t}\right) + Q_{\Gamma,\rm L} + Q_{\rm L}(a,h,\Delta T) = 0$$

$$\frac{1}{r}\frac{\partial \alpha_{\rm G} u_{\rm G} r}{\partial r} + \frac{\partial \alpha_{\rm G} v_{\rm G}}{\partial z} + Q_{\rm \Gamma,G} + Q_{\rm G}(h,a,\Delta T) \qquad (9)$$

1.2 数值算法

本文模拟对象具有强传热、传质,源项变化剧 烈,压力波传播急剧等典型特征,同时其"速度-压 强"耦合尤为紧密,基于完全统一、全隐式求解算法 对本模拟对象而言不太现实,主要是收敛性难以保 障。针对此问题,本文采用了时间步分割四步算法 技术,以提高其数值计算收敛性与稳定性。

1) 第一步: 网格内源相计算

首先,联立迭代求解水蒸气质量守恒方程,液态 水、蒸汽混合物能量守恒方程,仅考虑传热、传质源 项,其核心是基于汽、液两相状态方程(Equation Of State,EOS)的非平衡态传热、传质迭代计算,迭代收 敛后,进而更新各组分宏观密度、比内能、温度及传 质速率。然后,根据传质速率单独求解各组分动量 守恒方程,仅考虑其相变源项,由于当前"速度-压 强"并不匹配,因此相变源项中速度采用显式格式, 最终更新速度场。上述求解过程整体逻辑框架体系 如图1所示,其中上标<1>表示第一步值,上标<*n*>表 示前时间步值。

图1 第一步:网格内源项计算数值算法框架体系Fig.1 Step 1: numerical algorithm framework for cell-inside source term calculation

2) 第二步: 网格间对流计算

首先,单独求解全部质量守恒方程,只考虑对流 贡献,且采用显式格式;然后,单独求解全部能量守 恒方程,只考虑对流贡献,且也采用显式格式;最后, 联立迭代求解动量守恒方程,仅忽略相变源项,其中 压力项、对流项均采用显式格式,拽曳力、虚拟质量 力均采用隐式格式。由于在第2步中,"速度-压强" 依然不匹配,因此其对流项、压强均采用显式格式。 上述求解过程整体逻辑框架体系如图2所示,其中 上标<2>表示第二步值,上标<0>表示前时间步值。

Y Fig.2 Step 2: numerical algorithm framework for intercell convection calculation

3) 第三步:压力迭代

首先,确定残差方程,本文共考虑4个,第1个是 压力残差(EOS压力和网格压力之差),第2、3分别 是液态水、蒸汽混合物质量守恒方程残差,其对流项 采用半隐格式,第4个是蒸汽混合物能量守恒方程 残差,其比内能对流项采用显式格式(与膨胀功相 比,忽略对流效应影响),空泡份额对流项采用半隐 格式。然后,将上述守恒方程残差对 $p_p_o,p_w,p_n,p_s,$ $\bar{\rho}_L,\bar{\rho}_G,T_G$ 进行泰勒展开,即可获得迭代方程组。最 后,充分利用状态方程EOS模型,迭代求解即可更 新网格压强,进而更新两相速度、各组分宏观密度、 各组分比内能等其他状态参数。上述求解过程整体 逻辑框架体系如图3所示,其中上标 $\langle 3 \rangle$ 表示第三 步值。

4) 第四步:时间步末更新

重复第二步具体过程,但其网格压强、对流项速 度将采用第三步最新结果,最终更新宏观密度、比内 能、速度,即 $\bar{p}_{L}^{(n+1)}$ 、 $\bar{p}_{G20}^{(n+1)}$ 、 $e_{C1}^{(n+1)}$ 、 $e_{G1}^{(n+1)}$ 、 $u_{L1}^{(n+1)}$ 、 $v_{L1}^{(n+1)}$ 、 $v_{G1}^{(n+1)}$ 、 其具体算法框架与第二步极为 相似,限于篇幅不再赘述,其中上标 $\langle n+1 \rangle$ 表示当 前时间步值。

1.3 辅助模型

1) 两相流流型模型

两相流流型决定了各相组分间的接触方式,继 而影响交界面面积、曳力系数、传热系数及传热、传 质计算。文中考虑三种不同流型,包括泡状流、弥散 流和过渡流,具体流型由蒸汽相体积份额判断。当 $\alpha_{\rm G} \leq 0.3$ 时,视为纯泡状流,当 $\alpha_{\rm G} \geq 0.7$ 时,视为纯弥 散流,当 $0.3 < \alpha_G < 0.7$ 时,视为过渡流。对于控制 体网格而言,可统一视为由泡状流区域、弥散流区域 叠加构成,并采用泡状流区域、弥散流区域体积份额 f_B、f_D进行具体表征,其中f_B、f_D按式(10)计算,其中 $\alpha_{\rm B}$ 、 $\alpha_{\rm D}$ 分别是泡状流、弥散流特征值,分别默认取 0.3、0.7。x_B、x_D为组分在泡状流、弥散流区域内的分 配系数,具体按式(11)计算。则泡状流区域内液态 水(连续相)体积份额可表示为 $a_{LB} = a_L x_B$,弥散流 区域内液态水(液滴)体积份额可表示为 $\alpha_{L,D} = \alpha_L x_D$ 。蒸汽混合物在泡状流区域、弥散流区 域内的体积份额按式(12)、(13)计算。

$$f_{\rm B} = \frac{0.7 - \max\left[0.3, \min\left(0.7, \alpha_{\rm G}\right)\right]}{0.7 - 0.3}, f_{\rm D} = 1 - f_{\rm B} (10)$$
$$x_{\rm B} = \frac{\left(1 - \alpha_{\rm B}\right) \left\{ \alpha_{\rm D} - \max\left[\alpha_{\rm B}, \min\left(\alpha_{\rm D}, \alpha_{\rm G}\right)\right] \right\}}{\left(\alpha_{\rm D} - \alpha_{\rm B}\right) \left\{ 1 - \max\left[\alpha_{\rm B}, \min\left(\alpha_{\rm D}, \alpha_{\rm G}\right)\right] \right\}},$$
$$x_{\rm D} = 1 - x_{\rm B}$$
(11)

$$\alpha_{\rm G,B} = \begin{cases} \alpha_{\rm G}, \alpha_{\rm G} \leq \alpha_{\rm B} \\ \alpha_{\rm B} f_{\rm B}, \alpha_{\rm G} > \alpha_{\rm B} \end{cases}$$
(12)

弥散流区域内水蒸气(连续相)体积份额为:

$$\alpha_{G,D} = \begin{cases} \alpha_D f_D, \alpha_G \leq \alpha_D \\ \alpha_G, \alpha_G > \alpha_D \end{cases}$$
(13)

2) 相界面输运模型

为捕捉在流动,传热、传质等过程中相界面演化 行为,考虑了相界面输运方程,具体包括泡状流区域 内蒸汽泡和弥散流区域内液滴的相界面输运行为, 其输运方程分别如下,其中:*a*_{G,B}、*a*_{D,D}分别是泡状流 区域内气泡相界面积、弥散流区域内液滴相界面积。

$$\frac{\partial a_{G,B}}{\partial t} + \nabla \cdot \left(a_{G,B} \mathbf{V}_{G}\right) = \frac{2}{3} \cdot \frac{a_{G,B}}{\alpha_{G,B}} \left[\frac{\partial \alpha_{G,B}}{\partial t} + \nabla \cdot \left(\alpha_{G,B} \mathbf{V}_{G}\right) \right] + S_{G,B,N} + S_{G,B,W}$$
(14)

$$\frac{\partial a_{\mathrm{D},\mathrm{D}}}{\partial t} + \nabla \cdot \left(a_{\mathrm{D},\mathrm{D}} \mathbf{V}_{\mathrm{L}} \right) = 0 \tag{15}$$

就本文模拟而言,泡状流区域内蒸汽泡相界面 输运考虑了对流、膨胀/压缩、成核及破裂行为;弥散 流区域内液滴仅考虑了对流效应。其中,气泡成核 即式(14)中源项 $S_{G,B,N}$,具体模型参考了先进流体动 力学程序AFDM^[10],具体采用平衡态模型,其平衡态 参数 $a^{e}_{G,B,N}$ 、时间常数 τ_{N} 及源项 $S_{G,B,N}$ 按式(16)计算。 蒸汽泡破裂模型采用了韦伯破裂模型,也使用平衡 态方法计算,其平衡态参数 $a^{e}_{G,B,W}$ 、时间常数 τ_{W} 及源 项 $S_{G,B,W}$ 按式(17)计算。

$$\begin{cases} a_{G,B,N}^{e} = \left(36\pi M_{b}\right)^{1/3} \alpha_{G,B}^{2/3} \\ \tau_{N} = 10^{-4} \end{cases} \Rightarrow S_{G,B,N} = \frac{a_{G,B,N}^{e} - a_{G,B}}{\tau_{N}} \quad (16)$$

$$\begin{cases} a_{G,B,W}^{e} = \frac{3\alpha_{G,B}}{r_{e,W}} \\ \tau_{W} = \frac{2r_{G,B}}{|\Delta V|} \max\left(1.0, \frac{|\Delta V|}{0.2}\right) \sqrt{\frac{\rho_{G}}{\rho_{L}}} \Rightarrow S_{G,B,Br} = \frac{a_{G,B,W}^{e} - a_{G,B}}{\tau_{W}} \end{cases}$$

$$(17)$$

3) 相间曳力模型

在泡状流区域,"液态水-水蒸气"接触方式为连续液体包裹气泡,在弥散流区域,其接触方式为连续蒸汽包裹液滴。因此,总体上"液态水-水蒸气"接触方式可按"连续相-弥散相"处理。下文以连续相对弥散项施加的径向曳力进行阐述,正如式(18)所示,其中: $K_{\text{DR,D,R}}$ 为"连续相-弥散相"曳力系数; a_{CD} 为交界面积; u_{C} 、 u_{D} 分别表示连续相和弥散相径向速度; μ_{C} 为连续相动力黏度; ρ_{C} 为连续相密度; r_{D} 为弥散相 半径。系数 C_{D} 参考Ishii发展的相关模型^[11]。

$$F_{\rm DR,D,R} = K_{\rm DR,D,R} (u_{\rm C} - u_{\rm D}) = \left[\frac{3}{2}a_{\rm CD}\frac{\mu_{\rm C}}{r_{\rm D}} + \frac{a_{\rm CD}}{2}\frac{C_{\rm D}}{4}\rho_{\rm C}|u_{\rm C} - u_{\rm D}|\right](u_{\rm C} - u_{\rm D})$$
(18)

4) 虚拟质量力模型

在两相流中,当弥散相(如气泡、液滴)相对连续 相加速时,将产生"虚拟质量效应",由于本文需要模 拟"汽-水"两相流压力波传播,因此考虑了虚拟质量 力模型。具体参考了Fullmer和Bertodano报道的相 关模型^[12],系统分析程序RELAP5/MOD3.3也使用 了该模型。

液态水所受虚拟质量力为:

$$\boldsymbol{F}_{\rm VM,L} = C_{\rm VM} \alpha_{\rm L} \rho_{\rm L} \alpha_{\rm G} \left(\frac{\partial V_{\rm G}}{\partial t} - \frac{\partial V_{\rm L}}{\partial t} \right)$$
(19)

式中: a_{L} 为液态水体积份额; ρ_{L} 为液态水理论密度; a_{G} 为蒸汽混合物体积份额;注意到上述虚拟质量力 采用的是矢量形式, C_{VM} 为常数,通常取0.5。

蒸汽混合物虚拟质量力为:

$$\boldsymbol{F}_{\rm VM,G} = -C_{\rm VM} \alpha_{\rm L} \rho_{\rm L} \alpha_{\rm G} \left(\frac{\partial \boldsymbol{V}_{\rm G}}{\partial t} - \frac{\partial \boldsymbol{V}_{\rm L}}{\partial t} \right)$$
(20)

5) 传热传质模型

就本模拟而言,考虑了"汽-水"两相传热、传质 模型,尤其是交界面相变传热模型。

a) 传质模型

传质考虑的是交界面相变传质,"液态水-水蒸 气"交界面净传热速率可表示为:

$$q_{\rm L,Gh2o}^{i} = a_{\rm L,G} R_{\rm L,Gh2o} \Big[h_{\rm L} \Big(T_{\rm L,Gh2o}^{i} - T_{\rm L} \Big) + h_{\rm G} \Big(T_{\rm L,Gh2o}^{i} - T_{\rm G} \Big) \Big]$$
(21)

式中: $a_{L,G}$ 表示"液态水-蒸汽混合物"交界面积; $R_{L,Gh2o}$ 是"液态水-水蒸气"接触比例; h_L 为交界面之 液态水侧换热系数; h_G 为交界面之蒸汽混合物侧换 热系数; $T_{L,Gh2o}$ 为"液态水-水蒸气"交界面温度,取饱 和温度与平衡态传热交界面温度之较大者。 $q_{L,Gh2o}^i > 0$ 表示交界面存在净热量传出,则交界面发 生了水蒸气凝结现象,凝结速率按式(22)计算; $q_{L,Gh2o}^i < 0$ 表示交界面存在净热量传入,则交界面发 生了液态水汽化现象,汽化速率按式(23)计算; $q_{L,Gh2o}^i = 0$ 表示交界面处于传热平衡态,无相变 发生。

$$\Gamma_{\rm L,Gh2o}^{i,\rm con} = \frac{q_{\rm L,Gh2o}^i}{h_{\rm Gh2o} - h_{\rm L,con}}$$
(22)

$$\Gamma_{\rm L,Gh2o}^{i,\rm vap} = -\frac{q_{\rm L,Gh2o}^{i}}{h_{\rm Gh2o,\rm vap} - e_{\rm L}}$$
(23)

b)传热模型

就文中模拟对象而言,包括非平衡态相变传热 和平衡态温差传热。液态水、水蒸气的非平衡态相 变传热分别按式(24)、(25)计算。

$$Q_{\Gamma,L} = \Gamma_{L,Gh2o}^{i,con} h_{L,con} - \Gamma_{L,Gh2o}^{i,vap} e_L$$
(24)

$$Q_{\Gamma,\text{Gh2o}} = \Gamma_{\text{L,Gh2o}}^{i,\text{vap}} h_{\text{Gh2o,vap}} - \Gamma_{\text{L,Gh2o}}^{i,\text{con}} e_{\text{G}}$$
(25)

液态水、水蒸气的平衡态温差传热分别按式 (26)、(27)计算。

$$Q_{\rm L} = a_{\rm L,G} h_{\rm L} R_{\rm L,Gh2o} (T^{i}_{\rm L,Gh2o} - T_{\rm L}) + a_{\rm L,G} h_{\rm L} R_{\rm L,Ggas} (T^{i}_{\rm L,Ggas} - T_{\rm L})$$
(26)

$$Q_{\rm G} = a_{\rm L,G} h_{\rm G} R_{\rm L,Gh2o} \left(T_{\rm L,Gh2o}^i - T_{\rm G} \right) + a_{\rm L,G} h_{\rm G} R_{\rm L,Ggas} \left(T_{\rm L,Ggas}^i - T_{\rm G} \right)$$

$$(27)$$

式中: R_{L,Ggas}表示"液态水-不可凝气体"接触比例; Tⁱ_{L,Ggas}表示"液态水-不可凝气体"交界面温度,取其 平衡态温度。

6) 状态方程 EOS 模型

状态方程EOS 是封闭可压缩两相流守恒方程 的必备条件,同时也是本文开展传热、传质数值迭 代,压力迭代的重要保障。本文模拟涉及液态水、水 蒸气、不可凝气体三种物质组分的状态方程。

a)水蒸气状态方程

水 蒸 气 状 态 方 程 采 用 了 MRK (Modified Redlich-Kwong)模型,下式给出了水蒸气分压与其 温度和比体积之间的关系。

$$p_{\rm Gh2o} = \frac{R_{\rm Gh2o}T_{\rm G}}{v_{\rm Gh2o} - b_{\rm Gh2o,1}} - \frac{x(T_{\rm G})}{v_{\rm Gh2o}(v_{\rm Gh2o} + b_{\rm Gh2o,2})}$$
(28)

其中: $x(T_G)$ 按式(29)计算; $T_{h2o,ert}$ 为水临界温度。

$$x(T_{\rm G}) = \begin{cases} b_{\rm Gh2o,2} \left(\frac{T_{\rm G}}{T_{\rm h2o,ert}}\right)^{b_{\rm Gh2o,4}}, \ T_{\rm G} < T_{\rm h2o,ert} \\ b_{\rm Gh2o,2} \left[1 + b_{\rm Gh2o,4} \left(\frac{T_{\rm G}}{T_{\rm h2o,ert}} - 1\right)\right], \ T_{\rm G} \ge T_{\rm h2o,ert} \end{cases}$$
(29)

b)不可凝气体状态方程

不可凝气体采用理想气体状态方程模型。

c)液态水状态方程

本文考虑液态水为可压缩流体,式(30)给出了 液态水温度与其比内能和压强间的关系,其中:T_{s.L} 为液态水饱和温度,采用液态水比内能计算;∂T_L/∂p 为液态水温度对压强偏导数,也使用液态水比内能 计算。

$$T_{\rm L} = T_{\rm S,L} + \frac{\partial T_{\rm L}}{\partial p} \left(p - p_{\rm S,L} \right) \tag{30}$$

类似地,式(31)给出了液态水比体积与其比内 能和压强之间的关系,形式与式(30)类似。

$$v_{\rm L} = v_{\rm S,L} + \frac{\partial v_{\rm L}}{\partial p} \left(p - p_{\rm S,L} \right) \tag{31}$$

2 程序验证

为验证本文开发的汽-水两相二维轴对称压力 波传播模拟程序TPFPWPC-2D,选用了典型的汽-水 两相激波管基准例题,如图4所示,虽然该激波管属 于一维问题,但可以验证该程序的关键模型与算法。 该激波管长100m,中心插入一隔板,将激波管划分 为两个不同区域, 左侧为15 MPa的汽水混合物高压 区,右侧为10 MPa的汽水混合物低压区,具体初始 参数如图4所示。由于该程序具有二维轴对称特 性,恰可建立上述激波管,具体在径向划分3个网 格,轴向划分200个网格,激波管几何模型竖直放 置,则需忽略重力与基准例题保持一致。另外,建模 时需要考虑到径向均匀性,即压力波仅沿轴向传播。 激波管上、下两端采用绝对反射边界条件。很明显, 汽-水两相流激波管基准例题并无解析解,因此采用 了程序对比方式进行验证,具体选用了典型系统分 析程序 RELAP5 公开发布的模拟结果作为对比 基准[6]。

图 4 两相激波管示意图 Fig.4 Schematic diagram of two-phase shock tube

TPFPWPC-2D程序在方程求解上采用了时间 步分割四步算法,即人为将控制方程中传热、传质、 相变所致动量交换分离处置,这极可能造成时间步 长敏感性问题,针对此问题,首先开展了时间步长敏 感性分析,共选用15个时间步长,即5000 μs、 2500 μs、1000 μs、750 μs、500 μs、250 μs、100 μs、 75 μs、50 μs、25 μs、10 μs、7.5 μs、5 μs、2.5 μs、1 μs,对 此基波管进行模拟。图5给出了不同时间步长下此 激波管中心位置0.081 s时刻的压强值,很明显时间 步长在1~100 μs范围内具有良好的数值稳定性。同 时,测试表明若时间步长大于5 ms,计算则发散(库 朗限制)。

根据上述时间步长敏感性分析结果,最终选用

图5 汽水两相激波管 TPFPWPC-2D时间步长敏感性分析 Fig.5 Time-step sensitivity analysis of TPFPWPC-2D based on water-vapor two-phase shock tube

了 10⁻⁵ s 作为该验证用时间步长,且上述文献中 RELAP5 也是采用了此步长。图6分别给出了 0.081 s时刻压力、汽水两相温度、速度、空泡体积份 额的分布情况。从图6(a)可知,随着隔膜突然撤离, 汽-水两相高压区内形成冲击波并传入汽-水两相低 压区,致使低压区内压力上升;相反汽-水两相低压 区内形成膨胀波并传入汽-水两相高压区,致使高压 区内压力急剧下降。从图6(b)可知,汽-水两相温度 分布与压力分布具有一定相似性。从图6(c)可知, 激波管中心两侧区域出现了汽-水两相高速运动,最 大速度达到约48 m·s⁻¹。从图6(d)可知,由于汽-水 两相膨胀、汽化效应,高压区偏中心区域空泡份额出现了急剧上升,可见明显极大值点;相反,由于汽-水两相压缩、凝结效应,低压区偏中心位置空泡份额出现了急剧下降,可见明显极小值点。从压力、温度、速度及空泡份额分布特性比较可以看出, TPFPWPC-2D程序与系统分析程序RELAP5模拟结果整体符合较好,但TPFPWPC-2D与RELAP5依然存在局部差异,很可能是由两程序所考虑的模型精细度或个别模型差异造成的,也可能与数值算法有关系。

图 6 两相基波管压力分布(a)、温度分布(b)、速度分布(c)和空泡份额分布(d) Fig.6 Pressure profile (a), temperature profile (b), velocity profile (c) and void fraction profile (d) of the two-phase shock tube

3 压力波二维轴对称传播特性研究

为研究圆柱体区域内汽-水两相流动、传热、传 质条件下压力波二维轴对称传播特性,使用文中开 发的 TPFPWPC-2D 程序开展了数值模拟研究。数 值模拟几何模型如图7所示,建模考虑了径向和轴 向(即对称轴)两方向,实际模拟的几何区域为一个 高1.0 m,半径为1.0 m的圆柱体。径向0~0.2 m、轴 向0.1~0.3 m为高压区域,其余为低压区域,且初始 时刻两区域处于相互隔离状态,数值模拟开始后,两 区域流体瞬间接触。

首先,针对该问题开展了网格敏感性分析,选用 了 20×20、40×40、50×50、60×60、70×70、80×80、90× 90、100×100、110×110、120×120、130×130、140×140、 150×150,共计13套不同网格方案,均考虑等间距划 分,并以8.0×10⁻⁴s时刻计算区域内最大压强值为观 测点,对网格敏感性进行评价。图8即为评价结果, 很明显,当网格划分方案大于100×100时,数值模拟 结果已具较好稳定性,据此下文模拟选用了120× 120网格划分方案,开展压力波二维传播模拟与特 性分析。

图9给出了压力波的二维传播过程,注意该图 已进行对称性拓扑。从数值模拟结果可以看出,随 着两个不同区域内流体被解除隔离,来自高压区域 的流体向低压区域射流,进而产生了向外快速传播

核技术 2023, 46: 060605

的冲击波(shock wave),致使外部低压区域内压力 剧增。同时,来自低压区域内的膨胀波(rarefaction wave)也随之产生,并传播进入高压区域,致使其内 部压力降低。随着时间推移,压力波不断向边界传 播,约0.4 ms后,压力波已抵达底部边界,被边界壁 面完全反射,进而产生反向冲击波,反向冲击波与迎 面冲击波随即相遇,继而出现了叠加效应,致使下边 界附近出现了局部高压区。在下一个阶段,随着压 力波不断向外扩散,冲击波逐渐减弱。

4 结语

本文基于汽-水两相欧拉流体动力学理论,开发 了一种基于二维轴对称圆柱坐标系的压力波传播模 拟二维程序TPFPWPC-2D,考虑了汽-水两相非平衡 态相变传热、传质,偏微分方程求解使用了时间步分 离四步算法。并采用了典型的汽水两相激波管基准 例题开展了程序的验证工作及时间步长敏感性分 析,数值模拟结果与典型的系统分析程序RELAP5 进行了对比。最后为考查该程序模拟压力波二维传 播的能力,对圆柱体空间区域内的压力波传播行为 进行了二维轴对称数值模拟,同时还开展了网格敏 感性分析。本文研究得到的结论如下:

1)针对汽-水两相激波管基准例题,TPFPWPC-2D程序计算获得的压力、温度、速度及空泡份额分 布数据与典型的系统分析程序 RELAP5 符合较好, 程序总体上可以很好地模拟强传热传质两相条件下 压力波传播行为,进而从整体上验证了该程序的结 构模型及数值算法的正确性。同时,从时间步长敏 感性分析结果得知,本文采用的时间分割四步算法 具有较为显著的时间步长敏感性。

2)针对圆柱体空间内压力波二维轴对称传播算例,采用TPFPWPC-2D程序开展了数值模拟,获得

图9 二维压力波传播实例数值模拟结果 **Fig.9** The simulation results of 2D pressure wave propagation case

压力波在圆柱体内的二维轴对称传播特性,尤其是 捕捉到了压力波在二维传播过程中反射、叠加行为, 进而从一定层面上确认了该程序模拟压力波二维传 播问题的能力。

作者贡献声明 龚政宇实施研究,分析/解释数据, 起草撰写文章;辜峙钘提供研究思路,指导论文写作 与修改,提供研究经费支持;潘麒文负责材料支持, 提供相关文献;张牧昊负责文章内容的审阅指导;戴 嘉宁参与文献收集整理工作,数据整理。

参考文献

- Barten W, Jasiulevicius A, Manera A, *et al.* Analysis of the capability of system codes to model cavitation water hammers: simulation of UMSICHT water hammer experiments with TRACE and RELAP5[J]. Nuclear Engineering and Design, 2008, 238(4): 1129 – 1145. DOI: 10.1016/j.nucengdes.2007.10.004.
- 2 Delchini M O, Ragusa J C, Berry R A. Simulations of single- and two-phase shock tubes and gravity-driven

wave problems with the RELAP-7 nuclear reactor system analysis code[J]. Nuclear Engineering and Design, 2017, **319**: 106 – 116. DOI: 10.1016/j.nucengdes.2017.04.034.

- Zeidan D, Romenski E, Slaouti A, *et al.* Numerical study of wave propagation in compressible two-phase flow[J]. International Journal for Numerical Methods in Fluids, 2007, 54(4): 393 417. DOI: 10.1002/fld.1404.
- 4 Fletcher C D, Schultz R R. RELAP5/MOD3 code manual: user's guidelines. Volume 5, Revision 1[R]. Office of Scientific & Technical Information Technical Reports, 1995.
- 5 Odar F, Murray C, Shumway R, et al. TRACE v5.0 user's manual[R]. US Nuclear Regulatory Commission, 2010.
- 6 Sokolowski L, Koszela Z. RELAP5 capability to predict pressure wave propagation phenomena in single- and twophase flow conditions[J]. Journal of Power of Technologies, 2012, 92: 150 - 165.
- 7 Barna I F, Imre A R, Baranyai G, *et al.* Experimental and theoretical study of steam condensation induced water

hammer phenomena[J]. Nuclear Engineering and Design, 2010, **240**(1): 146 - 150. DOI: 10.1016/j. nucengdes. 2009.09.027.

- 8 Nika P, Serre G. Two-phase water hammer simulation with the cathare code[J]. Multiphase Science and Technology, 2011, 23(1): 57 - 75. DOI: 10.1615/ multscientechn.v23.i1.30.
- 9 Delchini M O, Ragusa J C, Berry R A. Simulations of single- and two-phase shock tubes and gravity-driven wave problems with the RELAP-7 nuclear reactor system analysis code[J]. Nuclear Engineering and Design, 2017,

319: 106 - 116. DOI: 10.1016/j.nucengdes.2017.04.034.

- 10 Bohl W R, Parker F R, Wilhelm D, et al. AFDM: an advanced fluid-dynamics model[R]. Los Alamos National Laboratory, NM (USA), 1990.
- Ishii M, Zuber N. Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J]. AIChE Journal, 1979, 25(5): 843 - 855. DOI: 10.1002/aic.690250513.
- 12 Fullmer W D, Bertodano M A L D. An assessment of the virtual mass force in RELAP5/MOD3.3 for the bubbly flow regime[J]. Nuclear Technology, 2015, **191**(2): 185 – 192. DOI: 10.13182/NT14-110.